Modular Maze System, the Free Maze Setup

Modular Maze System, the Free Maze Setup

The Free Maze is quite easy to configure, you start by screwing all of the fixed stands into place on the breadboard floor.

The orientation and position can be easily changed to give you different designs, simply slide the pegs at the bottom of each stand into a hole on the floor and then use the round black screw on an empty hole to secure it into place.

Next, you will attach each corridor unit. For the T-maze set-up, the center T corridors will divide the maze in 2, the straight corridors make up the length of each side of the maze, and then the end left and right corridors will sit under the pellet dispensers.

Finally, you will go ahead and attach the pellet dispenser units. In this video, they are placed at opposite ends of the T-maze

Questions?

O’Hara Behavioral Testing Equipment

O’Hara Behavioral Testing Equipment

Built out of a desire to help standardize behavioral neuroscience research

One of our brands O’Hara, a manufacturing company based out of Japan, has been developing and manufacturing equipment for behavioral experiments for over 40 years. O’Hara got its start by designing and manufacturing equipment for pharmaceutical companies that were doing efficacy testing on various therapeutic drugs. They quickly realized that there was no method of standardization across behavioral studies from different labs, research institutes, and pharmaceutical companies, which they felt would have detrimental consequences on data integrity. With this issue at the forefront of their minds, O’Hara began developing automated behavior tests to improve the reliability of behavioral data. This newfound focus was born out of a desire to help improve the reproducibility crisis that has been plaguing Neuroscience research for several years now – That is the inability to replicate scientific studies across experiments and research institutions.

What is the reproducibility crisis?

Reproducibility or replicability from a research standpoint is the idea that a given set of experimental findings should be able to be replicated following the same procedures. The inability to replicate basic scientific findings across research institutions and even across experiments is a major issue plaguing Neuroscience research today and is particularly prevalent in animal studies. This is not hard to believe given that the use of animals themselves provides inherent variability, even when all other factors are controlled for. To read more about this issue and what we are doing to try and alleviate the problem click here.

Ohara offers a variety of automated systems to help you standardize the data collection process

Don’t see what you are looking for?

O’Hara is committed to making customizable solutions to fit the researcher’s specific needs, and therefore our products can be tailored to better fit your needs. In fact, two of our products, the Free Maze and the Self head-Restraining Platform were created out of collaborations between research labs and O’Hara.

Learn more about the background behind the making of the Free Maze here.

Learn more about the motivation behind the Self Head-Restraining Platform here.

For more detailed information about our automated behavioral solutions connect with us today.

Precise Touch Operant Training

Precise Touch Operant Training

Today I’m going to demonstrate the unique features of our touch panel operant chamber system.

What is unique about our chambers is that they contain infrared sensors located at the top of the touchscreen itself that improve the accuracy of touch responses from small rodents.

Unlike the touch screen technology that most of our smartphones and computer screens use, called projective capacitance, the infrared sensors inside the touch screen improve accuracy by eliminating the need for a minimum force required to generate a response. This means that even nose poke’s from mice will register a response.

In addition to improved sensitivity, our touch panel was designed in a trapezoidal shape instead of a square, making it easier for the animal to focus on the screen ahead.

Our touch panel chambers are compatible with in vivo electrophysiology and optogenetics techniques, as well as with miniature head-mounted microscopes.

Chambers can be purchased singly or in a package of four for a more cost-effective option. In addition, the chambers come with our Operant TaskStudio software package, an extremely user-friendly software platform that enables customers to design and execute their own tasks or choose from a variety of pre-programmed tasks.

Check out more about our software in our next video. To learn more about our Touch Panel operant system please check out our product website or connect with an expert.

Questions?

Obtain accurate fluid intake measurements

Obtain accurate fluid intake measurements

The Drinko Measurer is one of our most simple products, but an extremely useful one for gathering precise measurements of liquid consumption in animal studies.

What makes the Drinko Measurer unique is that it contains double ball bearings inside the nozzle of the sipper, preventing leakage of excess liquid. Furthermore, when force from a mouse or rat is applied to the tip of the sipper tube, a single drop of solution is applied.

Each tube also contains a clip that attaches to the sipper tube to the cage to stabilize the bottle to the cage. This prevents it from being knocked out of place by the mouse or rat. This clip can also be adjusted so you can adjust the length of the nozzle within the cage.

Additionally, all parts are autoclavable for easy cleaning.

The Drinko Measurer comes with several different sipper tube lengths 2.5, 3.5 and 4.5 inch as well as two different bottle sizes, 10 and 15ml. We also have new 15ml bottles with ml markings making it easier to visualize liquid consumption. However, we recommend weighing the bottles for the best results.

Now I’m going to tell you about several applications we recommend for the Drinko Measurer. The first is for drug delivery experiments.
For drugs that can be administered orally and easily mixed into a solvent, simply use the Drinko Measurer as a means for drug delivery rather than having to inject your experimental animals.
This is useful for drug dosing experiments and toxicology studies. Also, by combining two units per cage, you can measure drug-seeking preference with drugs of abuse.

The second application is for conditioned taste preference. Or conditioned taste aversion
Easily Measure preference or avoidance of a liquid by combining two Drinko Measurer systems and measuring liquid consumption.

Finally, we do carry 40 mL bottles which are useful for larger animals or for extended access studies. 

You can purchase units easily by navigating to our shop.

Questions?

Factors that Influence Experimental Outcomes and How to Overcome Them

Factors that Influence Experimental Outcomes and How to Overcome Them

Experimental outcomes can be influenced by a variety of factors, some of which can be controlled for. Minimizing confounding factors is crucial to gathering reliable and repeatable results.

One of the biggest issues in animal research today is the replicability of results. Too often animal study outcomes can not be repeated. This is not hard to believe given that the use of animals themselves provides inherent variability, even when all other factors are controlled for. Differences in the strain of animals used, as well as the age of the animals, time of day that experimental tests are administered, and how long the animals were handled prior to experimental testing are just some of the factors that can impact experimental outcomes.

While it is impossible to eliminate all external factors, animal-experimenter interactions can have a huge impact on results and should, therefore, try to be minimized as much as possible.

How can you mitigate animal-experimenter interactions?

At AMUZA, we offer a variety of automated behavioral tests that were designed specifically to improve the reliability and repeatability of behavioral assays.

For example, our Touch Panel operant training system is an automated operant chamber that utilizes photo beam sensors in the touch panel itself to improve the accuracy of responses from small rodents. The Touch Panel also includes software that enables users to design and run their own tasks with video tracking capabilities for automated data collection.

Even our standard mazes come with video tracking and automated data collection and analysis.

Touch Panel

Self Head-Restraining Platform

Furthermore, one of our other products, the Self Head-Restraining Platform, was designed to completely automate the head-fixation process in mice in order to streamline head-fixed behavioral assays.

In fact, the platform, originally developed by Dr. Andrea Benucci at RIKEN brain institute, was designed specifically to help overcome the reproducibility crisis.

Not only do our tools free up experimenter time and labor to focus on the actual science, they help remove unwanted experimenter bias by standardizing the experimental testing arena.

Even with automated behavioral tasks, however, it is still possible to introduce experimenter bias. This is why we also recommend that you perform rodent behavioral tests at roughly the same time each day, as well as handle experimental animals equally. Ideally, the same experimenter should be handling the animals each day. If this is not realistic, different experimenters should be counterbalanced across days, or across testing groups.

Also, if you plan to use different strains of mice or rats for your experiments, make sure to run behavioral tests across these different strains to account for any strain-specific differences.

Additionally, with our automated rodent behavior systems, we recommend that the motivation of the experimental animals to perform the task is consistent. If animals are food or water-deprived, weights should be taken daily initially and then weekly thereafter to ensure that test subjects are maintained at similar percentages of their free-feeding body weight.

Cleaning the testing chambers between use

All of our behavioral tests are made out of acrylic that is easy to clean as well as removable floors. Testing arenas should always be cleaned between experimental sessions to make sure the scent of the previous animal will not influence behavioral results.

For more detailed information about our automated behavioral tests connect with us today.

How to Choose the Right Behavioral Test for Your Research

How to Choose the Right Behavioral Test for Your Research

New to Behavioral Research? Understanding how to choose the right behavioral test for your experiment is crucial.

There are several main categories of behavioral tests used to assess a variety of different brain functions and how they relate to behavior. In this post, we will describe these categories, the types of tests and what they measure.

Learning and Memory

There are a variety of mazes and operant tests that can be used to examine learning and memory in rodents. Below are some common examples, as well as what they are traditionally used to test.

Novel Object Recognition

This test is quite simple and can be performed inside the animal’s home cage. It is based on the tendency of rodents to spend more time exploring a novel object than a familiar one and requires the use of recognition memory.

Morris Water Maze

The Morris Water Maze is a water navigation task used to assess spatial learning and memory. In this task, animals must learn to find and remember where a hidden platform is that enables them to escape the water. Since rodents are averse to water, they are motivated to quickly find the hidden platform, which they cannot see because the water in the maze is opaque. Measuring response latency to the platform once the animal has learned where it is can be used to assess spatial working memory. This test can also be used to identify depression-like symptoms if the animal fails to show motivation to swim.

Barnes Maze

The Barnes Maze is also used to measure spatial learning and memory. The basic idea is to measure the ability of the experimental test subject to learn and remember the location of a target zone using distal cues located around the experimental testing arena.

The setup of the Barnes Maze consists of a circular surface with up to 20 around the outside of the circumference. Visual cues like-colored shapes or patterns are placed around the table for the animal to see. Under one of the holes is an “escape box” which the animal must learn to find using the cues. Rodents don’t like open spaces so they typically are very motivated to find the escape box.
Measuring the latency it takes for the animal to find the escape box is an indicator of spatial working memory.

T-Maze

The T-Maze spontaneous alternation test can be used to measure exploratory behavior. Rodents typically prefer to visit a new arm of the maze rather than a familiar one. The T-Maze can also be used to measure spatial working memory, by placing a reward at the end of one arm of the maze and then alternating the reward. The animal must learn that the arm that was previously not rewarded now is.

Y-Maze

The Y-Maze is very similar to the T-Maze with the exception that each of the arms is evenly spaced. The Y-Maze is thought to be slightly easier for rodents to learn compared to the T-Maze.
Interested in behavioral testing using several different maze types? Our Free Maze system at AMUZA gives you the opportunity to switch between up to eight different maze configurations. Learn more.

Fear Conditioning

Fear Conditioning (FC) is a type of associative learning task in which experimental test subjects learn that a previously neutral stimulus is associated with an aversive stimulus (foot shock). This learning is evidenced by anticipated freezing in response to the previously neutral cue even in the absence of the foot shock. With fear conditioning, animals learn to fear both the stimulus and the context that the stimulus is presented in. This test can be used to measure hippocampal-dependent contextual memory as well as fear processing in the amygdala.

Conditioned Place Preference

This is an operant test used to measure the motivational states that are connected to objects or experiences. You can measure both preference and avoidance by recording the amount of time the animal spends in the arena with the associated stimulus. This test is most commonly used to measure the rewarding and aversive effects of drugs. For these experiments, drugs are introduced in specific contexts, and then the animal is tested on how much time they spend in that particular context in the absence of the drug.

Sensorimotor Functioning

Open Field

The open-field test can be used to measure exploratory behavior and general locomotor activity in rodents and is a great test for measuring the toxicity of drugs in preclinical settings.

Accelerating Rotarod

In the accelerating rotarod test, the experimental test subject is placed on a rotating cylinder that is suspended in the air above the cage floor. Rodents will try to stay on the cylinder to avoid falling. The experimenter can measure the length of time that the animal stays on the rotarod. This is a great test to measure balance, coordination and motor planning and is effective for animal models of Parkinson’s disease and other neurodegenerative disorders.

Grip Strength Test

Also known as the forelimb grip strength test, in this test animals pull on a horizontal lever while the subjects are held by the tail and lowered towards the apparatus. Peak tension or the force applied to the bar just before the animal loses grip is applied. This test is useful for measuring and assessing deficits in motor function.

Addiction/Neuropsychiatric disorders

Startle Response and Pre-pulse Inhibition Test

Pre-pulse inhibition, also known as a reduction in startle response or PPI, is a phenomenon in which a weak stimulus (Pre-pulse) can suppress the startle response to a subsequent stronger startle stimulus (pulse). Impairments in PPI are thought to underlie impairments in sensorimotor gating, which is a common impairment seen in schizophrenia. Typically the way it works is that an animal is placed into a cylindrical chamber and a startling acoustic stimulus is played. The latency of the animal’s startle response to both the pre-pulse and the pulse can then be quantified.

 

Five-Choice Serial Reaction Time Task

The five-choice serial reaction time task, also known as the (5CSRTT) is commonly used to test attention and impulsivity in rodents. This task is typically carried out in an operant chamber, like our Touch Panel operant chamber, equipped with at least 5 holes. In this task, animals must correctly identify which of five holes has been illuminated via a nose poke. The time that the hole is illuminated can be shortened so that the animal must pay close attention in order to make the correct choice. Between trials, the experimental test subject must also inhibit responses to other holes until the next hole is illuminated. This task is quite useful for animal models of neuropsychiatric models like schizophrenia and autism.

Learn about all of the behavioral test options offered by AMUZA